Streamlining the licensing of Small Modular Reactors, WNA Webinar

 

WNA webinar

I watched the World Nuclear Association webinar about streamlining the licensing of Small Modular Reactors on July 28th. This was an interesting event with some good speakers. It is currently available on-line here.

The grumble behind the event is that, while companies want to sell their reactors around the world the pesky regulators in each country they want to build in want their say on the suitability of the design and this is tiresome, time consuming, expensive and may lead to country-specific design changes. The speakers made a good case that their jobs would be easier and that SMRs could start generating energy sooner if the regulatory barriers were at least lowered. We were also told that this is important for decarbonising the world energy market which is a relatively new way the SMR companies are trying to lean on Governments.

The audience was challenged by Tom Bergman, Vice President of Regulatory Affairs, NuScale (a leading SMR design/build Company from the USA) with the question “Do you believe that a design approved in the USA is not fit for somewhere else?”. Maybe we could ask him if he would be happy for a British designed reactor, approved by the British regulators and built in Britain to be operated in his backyard without US inspection of the safety case, design, build and operation? We also heard from Sol Pedre, Manager of CAREM project, the National Atomic Energy Commission, Argentina (CAREM is a simplified PWR being built in Buenos Aires province) who, rather naively in my opinion, thought that if they could build and operate a reactor in Argentina then that should go a long way to convincing other regulators that the design is safe enough for worldwide deployment.

Nadezhda Salnikova, Head of Business Development Department of Afrikantov OKBM, JSC, ROSATOM (this is the company that designs and builds Russia’s nuclear propulsion projects such as submarines, icebreakers and floating nuclear power plant) commented that they produce plant for use within Russia under Russian regulatory supervision but the floating power stations can go anywhere. A lack of global licensing means extra work for the Company and work for the local regulators that may be beyond their capabilities.

It was suggested that new nuclear nations could simply accept the regulatory approval of the country selling the reactor. I suspect that this runs counter to IAEA expectations but might be acceptable if a floating plant was to be temporarily positioned following some crisis and operated by experienced staff. This is little different to a nuclear-powered submarine or ice breaker visiting a foreign port.

I have some sympathy for the potential loss of design stability caused by local requirements. This potentially makes the design chain and build more complex but we are talking about an industry that, according to the IAEA had more than 70 SMR designs running in 2020  (Ref. here) while NuScale have designed 50, 60 and 77 MWe versions of their reactor before building any. Design updates do not seem to be a particular problem. Meanwhile modern flexible manufacturing systems should enable slightly different builds to be accommodated on the production lines without reducing shareholder value too far.

The problem with attempts to produce global standards is that most countries agree with the concept providing that the world adopts their existing standards (hence my question to Tom Bergman above).

This event did not really explore the barriers to closer working of the regulators across the world and the advantages that might accrue from converging regulation. I would be interested to see a  comparison of the regulators. What do they do in a similar fashion? what do they do differently? How much scope do their national laws and guidance give them to meet in the middle? Why would they want to do this? How much of the licensing effort is based on design and how much on siting, building and operating? Knowing this, we might then be in a better position to move partial streamlining of international licensing from an aspiration to a realistic target. (This information may be available in the WNA report “Design Maturity and Regulatory Expectations for Small Modular Reactors” which I haven’t yet read in full).

Small Modular Reactors are often based on evolutions of proven technology with enhanced levels of safety built in. Much of the additional safety comes from the small size and layout of the plant greatly reducing vulnerable pipework and reducing dependency on active systems for layers of safety. They have reduced the number of systems (valves, pumps, filters, tanks, chemicals, switches etc) that need to be considered. It seems logical to assume that their safety cases are simpler and fewer systems means fewer things to understand and approve. Design approval should be quicker.

Importantly the construction takes place in factories, possibly in a foreign country. What expectations will the regulator have for quality control and will they require to inspect the reactor during build?

If governments wish to see SMRs contributing to low carbon electricity, district heating, process heating and hydrogen production in the not-too-distant future then they do need to encourage regulators to do their bit to hasten the process without compromising safety. Generic Design Assessment (GDA), which takes about 4 years and is not mandatory, is far from the only issue. They also need to consider how the licensing of sites and operators will be undertaken if the market penetration talked about comes to pass.

What will the siting requirements be? Currently the UK process spends a lot of time and effort considering if a particular site is suitable for a reactor. That may be acceptable if you are only going to build one or two sites a decade but we cannot expect, for example, a foundry to spend years of effort to get permission to use a small (or even micro) reactor to melt metal. What siting processes do we need if, for example, six reactors are going to built and deployed each year?

In the UK the ONR has recently announced new guidance for parties requesting Generic Design Assessment of SMRs and AMRs (Advanced Modular Reactors). It would have been interesting to hear a discussion of this guidance, and the strategy behind it, to see if it goes someway to meeting the aspirations of the reactor manufacturers.

The UK 10 point plan calls for demonstrator SMR and AMR deployment in the early 2030s. But what is the strategy to deploy them, including siting them, in the following years?

I started listening to this webinar thinking about the issue of using one design of reactor in several different countries but ended up thinking that a more difficult issue (in the UK) may be that of gaining public and regulator acceptance of many more nuclear reactors doing a wider range of jobs requiring them to leave their large, well-protected sites, in the countryside with their hundreds of well qualified workers and instead sit in one corner of an industrial site or in the outskirts of a town and with a much smaller staff. This is  a national, rather than an international, issue.

I’m grateful to the WNA for organising this webinar and for the speakers who gave their time. It is an interesting topic and was well presented. A good case was made that life for a reactor vendor would be easier if some of the regulatory barriers were streamlined. It was not made obvious that this was likely or even possible. The question in the webinar title was not answered.

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *