This article is a brief synopsis of an NHS England paper looking at how it relates to nuclear licensed sites. Please refer to the original paper rather than this article if preparing plans. Katmal Limited can provide advice on planning should you require it.
“Members of the public who may be contaminated, especially following large incidents, may leave the scene and subsequently seek assistance at a nearby healthcare facility. All healthcare facilities are required to have arrangements in place to manage self-presenting patients. These plans need to recognise that people concerned about the health impacts of a HazMat/CBRNE contamination incident, but not necessarily affected by it, may also attend healthcare facilities and other NHS sites even though they do not require treatment.”
Timely alerting – are all NHS facilities alerted to a local incident?
Planning risk assessment
“The risk assessment should also take account of the need to protect healthcare facilities, staff members and uncontaminated patients and the provision of timely and appropriate care to people self-presenting from a HazMat/CBRNE incident”. This risk assessment is likely to conclude that anyone self-presenting following an accident at a nuclear reactor site may be contaminated with fission products (other licensed sites have their own specific hazards – for example plutonium, uranium or tritium for AWE) but, actually this remains unlikely and the levels of contamination if they were to be contaminated would not be sufficient to affect the health of staff members, uncontaminated patients or other persons on site. What remains is a presentational issue. How do we assess and reassure the self-presenter and how do we maintain confidence that the facility is fit for purpose against rumour that it is badly contaminated?
The paper does not mention it but for those NHS facilities near a licensed site it would be sensible to understand the type of contamination that is possible and how it could be identified and measured on people. This is easier for sites that might release beta/gamma active materials rather than sites that might release pure alpha emitters. But either way, an understanding of how to detect and measure plausible local contaminants should be pursued and suitable instruments maintained.
“Organisations may wish to identify areas of their premises where IOR [Initial Operational Response] activities can take place. This would include access to clean running water and be considerate of patient modesty. Such areas could be marked with zones for patients to disrobe and then move to, making communication easier”.
Ideally the facility would be able to move the self-presenters to a remote area where they can be processed without the potential to contaminate busy areas of the facility. Initial screening might be by questioning where the person was and what they were doing during plume transit.
“An incident of this nature has the potential to be disruptive and may result in the affected premises being compromised for a period of time. The plan will need to link to the organisation’s business continuity arrangements to mitigate this.”
Section 3.6 of the paper reviews the potential psycho-social impacts of the event stating that the public are likely to be orderly, will respond better in a well planned and executed response with clear information, efficient, polite and caring handling of self-presenters including respected the need for privacy and modesty during decontamination. It is important to plan and train to get this aspect of the response right.
“Available evidence suggests public behaviour will be orderly and there will be no panic.”
“These arrangements and the Remove, Remove, Remove model do not require staff members to wear specialist protective equipment[1] nor does it require specialist decontamination equipment for the patient to use. Instead the model utilises any absorbent material such as blue roll or paper towels which can be retrieved from most building’s toilets or kitchen facilities”.
Lock-down procedures might be required to control access and egress to the facility to minimise confusion and the spread of contamination. “It should be noted, however, that healthcare organisations cannot physically prevent people from leaving their premises (even if the hazard or threat is outside the building which is locked down)”.
The NHS has a STEPS 1-2-3 protocol:
“The Emergency Services use the STEPS 1-2-3 plus process as a recognition and risk assessment tool. If one incapacitated patient is encountered with unexplained symptoms then they are treated using NHS universal precautions. If two incapacitated patients are encountered together with unexplained symptoms they are treated with caution and a high index of suspicion of contamination using NHS universal precautions. When three or more incapacitated patients are encountered together with unexplained symptoms the staff withdraw to a safe distance and call for specialist resources and advice. At the same time the plus element indicates the instigation of IOR.”
This is very unlikely to be triggered for a nuclear accident at a licensed site as the dose rates are likely to be too low to trigger symptoms. It could be triggered if a powerful source is left in a public space (See Cochabamba bus incident 2002) or if a powerful source is dismantled and distributed among a population (See Goiania orphan source incident 1985).
The remove, remove, remove Initial Operational Response then comes into play.
Tell those affected to:
Remove themselves … from the immediate area to avoid exposing others. Fresh air is important.
Remove outer clothing …
Avoiding pulling clothes over head if possible;
Do not eat, drink or smoke
Do not pull off clothing stuck to skin
Remove the substance …. from the skin using a dry absorbent material to either soak up or brush it off.
Again, it is unlikely that skin will be itchy or painful as a result of radioactive contamination. Care should be taken not to break the skin and allow contaminants a route into the body.
Under the remove themselves banner it is suggested that the self-presenters should be isolated from other patients and staff members in a safe area, preferably outside. Continuous clear communication would be key so that the worried person does not feel abandoned.
The advice for removing outer clothing (which is expected to remove most of the contamination) suggests that “Undressing should be systematic to avoid transferring any contamination from clothing to the skin”. It recommends cutting clothes off rather than pulling them over the head. The important thing is to avoid touching the outer surface, particularly avoiding the outer surface coming into contact with the mouth, nose or eyes.
Modesty and warmth may become an issue when asking members of the public to disrobe outside.
Removed clothing should be bagged and labelled but this process should not be allowed to slow the undressing process unduly.
Dry decontamination, blotting and lightly rubbing skin with any dry absorbent material such as paper tissue, clean cloth etc is the preferred for of decontamination.
Hair may need careful wet decontamination. In the meantime potentially contaminated hair should be covered and away from the face.
If there is an incident a dynamic risk assessment would be expected from those in charge.
“When conducting a dynamic risk assessment there are five principal stages to be followed:
Stage 1 – Identify the hazard
The first step is to look for hazards. Consider the location that the activity or process is carried out and check for potential dangers. Concentrate on anything with the potential to cause serious harm to employees, members of the public and the patient(s).
Stage 2 – Decide who might be harmed and how
Decide who and how many might be at risk
Stage 3 – Evaluate the risks and identify suitable and sufficient control measures
Implement the Remove Remove Remove procedures
Stage 4 – Record and implement findings
The findings of the risk assessment must be brought to the attention of those at risk to harm and appropriate training and instruction given on the implementation of the control measures.
Decide who and how many may be at risk; is it those undertaking the activity or may it also affect members of the public and staff.
Stage 5 – Review the assessment
All risk assessments should be reviewed at a frequency proportional to the risk.”
Section 5 states that there might ne a requirement to seek specialist advice. This may come from UKHSA or the operator of the facility that is the source of the issue.
There is more discussion about PPE (Section 6) and Quarantine (Section 7) and a larger section on Recovery (Section 8).
This is a refreshingly short and focused advice sheet with sensible sounding advice.
[1] Direct physical contact with the patient(s) should be avoided.
The following article was written by a guest writer, ChatGPT given the prompt “tell me about the Radiation (emergency Planning and public information) regulations 2019”. It is not at all bad. This technology is going to change the way we work!
The Radiation (Emergency Preparedness and Public Information) Regulations 2019 (REPPIR 2019) are a set of regulations issued by the UK government that provide guidance on emergency preparedness and response in the event of a radiation emergency.
The purpose of these regulations is to ensure that there is a coordinated and effective response to a radiation emergency in the UK. They apply to a range of activities involving radioactive substances, including nuclear power plants, hospitals, and research facilities that use radioactive materials.
Under the REPPIR 2019 regulations, operators of sites that use radioactive materials must conduct regular assessments of the risks associated with their activities, and they must develop and maintain emergency plans that specify how they will respond to a radiation emergency. These plans must be regularly reviewed and tested to ensure that they are effective and up to date.
The regulations also require operators of sites that use radioactive materials to provide public information about the risks associated with their activities, as well as information on how to respond in the event of an emergency. This information must be easily accessible to the public and must be regularly reviewed and updated.
In addition, the regulations establish a framework for coordination and cooperation between the various agencies and organizations involved in responding to a radiation emergency, including the emergency services, local authorities, and national government agencies.
The REPPIR 2019 regulations build on the previous Radiation (Emergency Preparedness and Public Information) Regulations 2001, and they reflect changes in the technology and practices associated with the use of radioactive materials.
Overall, the Radiation (Emergency Preparedness and Public Information) Regulations 2019 represent an important step forward in ensuring that the UK is prepared to respond effectively to a radiation emergency, and that the public is adequately informed and protected in the event of such an emergency.
We are living in a period when the costs of the Covid lockdowns seem to be noticeable if not quantifiable; disrupted education for our children with increased attainment gaps between the rich and the poor, even longer waiting lists in the NHS, a rise in the late detection of cancer, excess deaths from all causes and economic dislocation.
There is an interesting article in the Spectator magazine from a few weeks ago in which Rishi Sunak says that these effects could have been predicted, which seems sensible, and that, if they had been given proper weight, we would have spent less time in lockdown, which is less clear.
We must remember that we feared that Covid would leave many thousands of people struggling to breathe and a lot of them dying an uncomfortable and avoidable death because of lack of medical facilities. We must also remember that there were many voices calling for stricter rules to be applied for longer.
Before we attack the costs of lockdown, we should maybe estimate how many peoples’ lives it saved. I don’t know if that estimate is available. Would the UK deaths from covid (currently standing at 171,048 as of 5/9/22 according to coronavirus.data.gov.uk) have been a few times higher or orders of magnitude higher? The first lockdown on 23rd March 2020 was two weeks before the first peak and rapid decline in cases – coincidence?
The lockdown came when the scientists advising the government reported that the Covid deaths could reach 500,000 if no action was taken but could be below 20,000 if Britain locked down. That is quite a range of outcomes. It is not often someone has the chance to save 480,000 lives.
There then came a period of “following the science”. Rishi Sunak states that any attempt to discuss the downside costs were brushed aside and a “fear narrative” launched to increase adherence to shut down.
He also reports that he could not get his hands on an explanation of the assumptions, uncertainties and sensitivities behind the headline numbers and he says that “UK government policy – and the fate of millions – was being decided by half-explained graphs cooked up by outside academics” (it is not clear to me if he was talking about millions of people or millions of pounds).
The real problem, and Rishi Sunak identifies it, is that a lot of weight was put on the scientific educated guesses about the possible fatality tally and maybe not enough thought into considering the full range of costs. Whether or not that would have, or should have, changed the lock-down strategy is unclear.
What does this mean for the nuclear industry? We have arrangements to move people into shelter, evacuate them from their homes and provide them with thyroid blocking drugs in the short term and food controls and, possibly, area controls in the longer term.
We have scientists advising the Strategic Co-ordination Group via STAC or directly (I used to be one when I worked for Magnox). We have another set of scientists advising SAGE, who feed into the national response.
The Strategic Coordinating Group is composed of senior representatives of the emergency services, local government and health bodies. Do they have the ability and confidence to put the estimated doses and avertable doses into context and make clear judgments on the need for protective actions? What should we do with playgroups, schools, hospitals and care homes within the areas potentially affected by a severe nuclear accident? Do we shelter the population for 2 days or 2 weeks or do we drop the shelter advice once the remaining avertable dose is below the lower ERL for shelter? How will the public and media react? Do we have better answers now than we had three years ago?
The nuclear industry should look at the deliberations that went into lockdown and other counter-covid instructions and at the public response to them in the short, medium and long term to see if there are any lessons to learn.
Rishi Sunak has given us his inside story. There are many more to hear and balance.
This report discusses the emergency preparedness we may wish we had put in place if we find ourselves responding to a severe nuclear accident that has resulted in very high doses to some members of the public and has rendered some areas uninhabitable and others problematic. It argues that in that situation you need mature systems to share complex information with individuals and communities, the ability to retain their trust and allow them to make important life-choices while also having in place polices and resources to support the business, social and family life in areas blighted by radioactive contamination. It then discusses the problem in some depth and with clarity while skating over the difficultly with providing solutions.
This publication updates and supersedes Publications 109 and 111. It also supersedes the recommendations published previously in Publications 40, 63, and 82.
The executive summary starts “Large nuclear accidents result when there are significant releases of Radioactive material into the environment, impacting widespread areas and affecting extensive populations. They are unexpected events that profoundly affect individuals, society, and the environment. They generate complex situations and legitimate concerns, particularly regarding health, for all those affected by the presence of undesirable sources of radioactivity”.
I wonder if the use of “legitimate concerns” is fully justified. The two big accidents we all know about, Chernobyl and Fukushima, have had societal and individual impacts well beyond those suggested by our understanding of harm radiation causes to living tissue. It is either the unreasonable concerns about radiation that are causing the problems or our understanding of radiation and the basis of our use of the art of radiological protection in emergency planning that is faulty.
Interestingly the executive summary also states “The Commission recommends that plans should be prepared in advance to avoid severe and long-term consequences following a nuclear accident. Such preparedness plans should comprise a set of consistent protective actions, adapted to local conditions at nuclear sites, taking into account the societal, environmental, and economic factors that will affect the impact of the accident and its response”. I believe that this is suggesting that you go beyond the preparation to rapidly introduce shelter, evacuation and thyroid blocking and that you use locally set trigger points rather than the national ERLs.
The Commission see the response to a large nuclear accident in three phases and relate them to exposures situations thus:
Figure 1 Phases and exposure situations
The report states that a “Large nuclear accidents affect all dimensions of individual and social life” with concern about the health effects of radiation being the major concern but the situation is complex and includes “social, psychological, environmental, educational, cultural, ethical, economic, and political factors associated with the consequences of the accident”. It asks for particular attention to be paid to the needs of “some vulnerable groups, particularly pregnant women, children, people with regular/ specific medical care, and elderly people”.
You could argue that the wide range of impacts listed above would not occur if it were not for the contamination and the concern about health effects. Do you tackle the excessive concern or the results of that concern? In the real world, you probably need to do both.
The report takes a couple of pages to review the effects of radiation on human health.
On societal consequences it opens with “The sudden presence of radioactive contamination is perceived as undesirable, illegitimate, and dangerous, and generates a desire to get rid of it. This presence in the living environment of humans profoundly upsets the well-being of individuals and the quality of life of affected communities. It raises many questions, concerns, and fears; generates numerous views; and worsens conflicts. Some residents will choose to stay in affected areas, when this is allowed, and others will leave. Among those who leave, some will return and others will relocate permanently. This can significantly affect community life and demographics, with a notable decrease in the number of inhabitants, especially young people, as illustrated after the Chernobyl and Fukushima accidents”.
And later “Beyond the widespread fear of radiation in all sectors of the population, sociological studies have also revealed: a collapse of trust in experts and authorities; disintegration of families and social ties; apprehension about the future, particularly for children; and a progressive feeling of loss of control over everyday life. All of these consequences affect the well-being of people and pose a threat to their autonomy and dignity”.
The negative image of the affected areas, a reluctance to visit and a rejection of the people living there and any goods produced there continuous to blight the affected area and constrain social dynamics.
The economic impacts can be profound. Local agriculture is likely to suffer. Radiological contamination may affect critical infrastructure. All this has an impact on local businesses and employment, as well as key public services such as government services, security institutions, medical facilities, financial systems, public health services, and education facilities. For local companies their staff, workplaces, products, and image can all be affected. Change in the local demography, as the young and anxious abandon the area, is another factor influencing the overall economy of affected areas.
People are destabilised by the complexity of the situation, both in the immediate response and in the longer term and may have many questions. “People affected by a nuclear accident can feel anguish, dismay, discouragement, helplessness, dissatisfaction, frustration, and anger. Many affected people report feeling a lack of control over their individual living and working conditions, and this is linked to a high level of psychological stress”. This can result in psychological and psychosomatic disorders.
Almost as an aside the report states that “Studies reported an elevated rate of depression and post-traumatic stress disorder among the responders who were directly confronted by the disaster scene, potentially inducing a threat to their lives”. I think the report could have aided clarity by better splitting the discussion about responders from that about affected members.
“Studies have also reported that people who are confronted with radioactive contamination in their daily lives, even if only a small amount, and evacuees facing poor living conditions with no clear view about their future are more vulnerable to anxiety, stress, and depression”.
Parents with young children, especially those in contaminated areas, are particularly vulnerable to anxiety with negative impact on their health and the on the family unit.
Change in lifestyle and reduced circumstances are also stressors.
Experience has shown that “shortly after an evacuation, vulnerable populations such as patients in hospitals and the elderly in care homes are particularly susceptible to hypothermia, dehydration, and the worsening of pre-existing conditions. These can lead to increases in mortality. Meanwhile, children living in evacuation centres are more prone to infectious diseases due to overcrowding and stress caused by inadequate facilities. They can also be affected psychologically, with the subsequent development of emotional problems. Verbal abuse and bullying of evacuated children can form an additional source of stress”.
“In the intermediate and long-term phases, those who remain in the contaminated areas, as well as those subject to temporary relocation, can experience a range of long-lasting physical health effects due to their changes in lifestyle, including obesity, diabetes, cardiovascular and circulatory diseases, hypertension and chronic kidney disease due to poor diet (e.g. lack of fruit and vegetables), lack of exercise, substance abuse, and restricted access to medical facilities or opportunities to seek treatment. Furthermore, restrictions on outdoor play due to the presence of radiation can lead to higher levels of obesity in children”. None of these effects are directly due to ionising radiation.
Figure 2 The Optimisation Process
The standard picture to show how reference levels help reduce dose over time is reproduced below.
Figure 3 The role of RLs in the optimisation process
The concept is that you set a reference level and then try to identify those people whose predicted dose is above that level and concentrate on measures to reduce their dose. This is expected to further reduce the doses to some of the people already below the reference level and the dose distribution shifts to the left. It is suggested that after time the reference level is reduced and further steps considered.
What this cosy picture misses is that each engineered reduction in the dose distribution, as opposed to reduction with time as the radioactivity decays or weathers, is accomplished by the imposition of another protective action or by a decontamination exercise that affect people who already experience low doses. Each these have costs; financial costs and lifestyle costs. How can we be sure it is worth it?
The Commission recommends including, where feasible, the views of all relevant stakeholders to decide the level of ambition to be achieved by selecting a given reference level. A laudable but difficult ambition.
The report has a long section (Section 3.2) on the need to understand the dose uptake of the public in the short, medium and long term which entails an understanding of the initial distribution of deposited radioactivity, the migration of radioactive material in the environment and food chains and the habits of people before and after the event. Understanding this, and the limitations of the results, is a major undertaking and requires specialist experience and knowledge.
The effort and resources required to triage the public to identify those that would benefit from medical treatment, decontamination or counselling might be significant (and the process may be a significant stressor of the population).
The report states that “Measurement data should be collected centrally and made available as soon as possible to all relevant organisations in charge of managing the early and intermediate phases in order to assist them in making decisions on protection. For the sake of accountability and transparency, the Commission recommends that this information should be shared with members of the public, accompanied by a clear explanation, while respecting the protection of personal information”.
In section 3.3, the report identifies that “Individuals who may be involved in the response to an accident are diverse in terms of their status: emergency teams (e.g. firefighters, police officers, medical personnel), workers (occupationally exposed or not), professionals and authorities, military personnel, and citizens who volunteer to help”.
The report suggests treating non-responders on-site in the same manner as the off-site population (shelter, evacuate and thyroid block) but “those who are involved in the early-phase response should be managed as responders, applying the principles of justification of decisions and optimisation of protection.
“The justification of decisions that may affect the exposure of responders should be taken in light of the status of the damaged installation and its possible evolution, as well as the expected benefits in terms of avoidance or reduction of offsite population exposures and contamination of the environment”.
“Overall, these decisions should aim to do more good than harm; in other words, they should ensure that the benefit for the individuals concerned and society as a whole is sufficient to compensate for the harm they may cause to the responders”
The report recognises that it may be hard to predict the doses to responders in situations where sources are out of control, particularly in the early stages where there is very little dose characterisation. It suggests that a reference level of 100 mSv may be appropriate for responders but “would be justified only under extreme circumstances”. Levels above this would be exceptional, reserved for life saving and to prevent further degradation of the facility.
This section is adequately covered by any organisation working within the REPPIR-19 regulations.
The report also suggests that those likely to be involved in the off-site response such as emergency services. Medical staff and bus drivers should be identified in advance and trained to appropriate levels of understanding.
Section 3.4.1 describes and justifies the early phase protective actions of shelter, evacuation and temporary relocation, thyroid blocking, decontamination of people, precautionary foodstuffs restrictions and those in the intermediate phase; temporary relocation, foodstuff management, management of other commodities, decontamination of the environment, management of business activities. It is a clear and competent description of the situation but does not add greatly to the body of knowledge.
Section 3.4.3 “The co-expertise process” is more interesting. It recommends a “process of co-operation between experts, professionals, and local stakeholders aims to share local knowledge and scientific expertise for the purpose of assessing and better understanding the radiological situation, developing protective actions to protect people and the environment, and improving living and working conditions”.
“From an ethical point of view, the co-expertise process focuses on the restoration and preservation of human dignity, which is one of the core values of the system of radiological protection (ICRP, 2018). More particularly, the process can be seen as reflecting inclusiveness, which is the procedural value behind the concept of stakeholder involvement. Beyond that, it allows the implementation of empathy (i.e. it provides the experts with opportunities to immerse themselves in and to reflect upon the experiences, perspectives, and contexts of others), which in turn helps find suitable and sustainable protective actions”.
Figure 4 Working with the community
The report suggests that being transparent about the monitoring programme, what is measured, why and what it means in terms of dose paths helps people by “taking into account radiological criteria and comparison with other situations of radiological exposure”.
This openness and discussion can then extend into the realm of identifying, implementing and managing protective actions with those directly affected feeling some ownership and understanding of the decision-making process rather than being on the receiving end of “expert” pronunciations.
“Protective actions implemented during the early and intermediate phases should be lifted, adapted, or complemented when authorities and stakeholders consider that these actions have achieved their expected effect, or when their continued application is no longer justified (i.e. cause more harm than good in the broadest sense)”. This is now known to be harder than expected and needs the coordination and support of various organisations and, of course, the public.
At high levels of residual contamination there may be difficult decisions to make about preventing populations returning to the area. A slightly gentler outcome would be to allow people back to collect valuables and precious materials but not to stay. Paragraph 175 discusses the conditions that might need to be mat before you allow people to live in a highly contaminated area.
The report (Section 4) suggests that the long-term phase has started when you’ve agreed that the facility is secured and decisions have been made about the long-term future of the area. At this stage the rehabilitation of the living and working conditions and the interaction of individual and community is complex. Management based on radiological principles and criteria was not sufficient to respond to the challenges.
“Experience has shown that large differences in levels of exposure may exist between neighbouring communities; within families in the same community; or even within the same family according to diet, lifestyle, and occupation. These differences generally result in a skewed dose distribution where a few individuals receive a larger exposure than the average”. This requires people in the area to be supported and informed of the factors that contribute to their radiation dose “not only to ensure adequate protection against the radiation, but also to guarantee sustainable living and working conditions, including respectable lifestyles and livelihoods”.
Section 4 covers the radiological characterisation in the long term and the protective actions that might be appropriate.
“The protective actions available for the long-term phase are many and varied, ranging from removing the contamination present in the environment (decontamination and waste management) to implementing collective and self-help protective actions to control external and internal exposures (management of food products, dietary advice)”.
“To restore individual well-being and the quality of community life in the affected areas where people are allowed to reside, there is a need to develop accompanying measures beyond the protective actions themselves. A first objective is to re-establish technical networks (water, electricity, telephone, etc.), infrastructure (roads, railway lines, etc.), and the services necessary for public life (schools, hospitals, post office, banks, shops, social activities, etc.). It is also important to ensure the overall socio-economic development of the territories concerned (establishment of industrial zones; support for the maintenance and establishment of agricultural, industrial, and commercial activities; etc.).”
“In the long-term phase, exposures of people, fauna, and flora are reduced gradually over time due to the combined effects of protective actions and natural processes. As a result, years after a nuclear accident (or even decades in the case of a severe accident), it is advisable to consider whether to maintain, modify, or terminate protective actions.”
Section 5 discusses preparedness planning for a large nuclear accident. It suggests that “For the long-term phase, preparedness aims to identify the societal, environmental, and economic vulnerabilities of potentially affected areas, and to develop guidelines that are sufficiently flexible to cope with whatever happens in reality”.
It further suggests that a prerequisite to preparedness is acknowledging the possibility that a nuclear accident could occur and seeking representation of all stakeholders in preparedness. I think that here the Commission should acknowledge that local, regional and national resilience teams have risk assessments that tell them that, that for example, floods and animal or human disease are far more likely and would be extremely disruptive and that that is where they should devote their preparedness resources rather than on extremely rare (we hope) severe nuclear accidents.
REPPIR-19 does require that severe accidents be considered, albeit in outline, and maybe tested occasionally. This will raise awareness within the responding organisations but is unlikely to push preparedness significant further forward with regard to interacting with an alarmed community.
“Practically, preparedness plans should contain a set of appropriate protective actions and arrangements for implementing them, including reference levels. Provisions for the deployment of necessary equipment for the characterisation of the radiological situation and the implementation of the co-expertise process should also be considered. In addition, specific communication schemes to inform the public and other stakeholders, as well as provisions for the training of those to be involved in the response, should be developed. These plans should be subject to regular exercises involving the various stakeholders”. This looks more like the detailed planning that is undertaken for what used to be called design basis accidents.
Importantly, and realistically, the report states that “The preparation of detailed plans for accident and post-accident management is a national responsibility”.If there were to be a severe accident the aftermath would involve difficult discussions. These would include discussions about which areas to abandon, which areas to allow to return to a controlled usage and which could be returned to normal. Further discussions would then be needed about how much decontamination to attempt and where (children’s playgrounds and schools, public areas, peoples’ gardens and homes?) and about how to avoid economic blight and stress.
The report concludes that “For this purpose, experts and professionals should adopt a prudent approach to manage exposures, seek to reduce inequities in exposures, take care of vulnerable groups, and respect the individual decisions of people while preserving their autonomy of choice. Experts and professionals should also share the information they possess while recognising their limits (transparency), deliberate and decide together with the affected people what actions to take (inclusiveness), and be able to justify them (accountability). The issue at stake is not to make people accept the risk, but to support them to make informed decisions about their protection and their life choices (i.e. respect their dignity)”. That sounds really difficult!
Central government should maybe look at this report closely and see what preparations might be appropriate against the very unlikely severe nuclear accident. The report suggests “for the long term phase, preparedness aims to identify the societal, environmental, and economic vulnerabilities of potentially affected areas, and to develop guidelines that are sufficiently flexible to cope with whatever happens in reality”. This appears to be suggesting applying the tools of Business Continuity Management and Business Disaster Recovery to communities.
Central Government may, for example, decide to have briefing materials ready to educate community influencers such as GPs, local council members, MPs, church leaders, media and teachers so that they can cascade knowledge and understanding and report back the views of the community. This might help kickstart the transparency and inclusiveness and reduce the stage at which the population loses trust in “experts”.
They may decide to produce guidance about what to do if homes, streets and schools are contaminated to a range of levels working out how to allow life as near as normal as possible. A world in which children cannot play in the open will never be a healthy and happy one.
There is no doubt that if such an accident happens we will wish that we had done more work preparing for it (or more work preventing it).
In the event of a nuclear or radiological emergency hospital medical physicists may find themselves providing front-line response to the event or supporting their hospital’s efforts to triage and treat potentially contaminated casualties.
The objective of this IAEA publication is to guide the trained clinically qualified medical physicists (CQMP[1]) to act appropriately in a nuclear or radiological emergency and ensure that an efficient and coordinated contribution is made to the management of such an emergency. The knowledge of the CQMP can be vital in the preparedness and response to nuclear or radiological emergencies.
The report is accompanied by a pocket guide which summarises most of the concepts given in the full report and is designed as a working aid. But at 78 pages it would require an unusually large pocket. Rather than be an on-the-day aide-memoir the pocket guide covers a lot of preparedness information from the main report. EPR_Pocketbook_web.pdf (iaea.org)
The main report starts with an introduction to emergency planning giving various definitions of emergencies and then a quick overview of the roles the medical physicist might occupy in the local and nation emergency response plans. The noted roles are:
Radiological assessor (RA) requiring a qualified expert in radiation dosimetry;
Scientific and technical advisor giving advice on matters related to a nuclear or radiological emergency;
Trainer in radiation protection providing training within their own clinical environment and, possibly, within and beyond their hospital. During the emergency the trainer will be able to provide quick briefings on radiation protection to the emergency teams.
The medical physicist may serve in a pre-hospital function supporting triage teams and decontamination actions or in the hospital providing advice and training to medical staff.
I think I would have preferred the report to start with what a nuclear or radiological emergency might look like to hospital staff: many people turning, some injured, some contaminated (some both injured and contaminated), many worried well. This may better grab the reader’s attention.
The concept of a scalable incident command system, allowing multi-agency coordination and rapid decision making over a range of scale of event and the medical physicist’s position in the chain of command are discussed. The importance of each player knowing who they report to and to whom they are responsible in a crisis organisation and the understanding that this may not align with normal management is stressed. The diagram given here, cut and pasted from another document, is not helpful. Showing the medical physicist’s position in a chain built round them might have been better.
In section 4, the report runs through the preparedness phase tasks of risk assessment, training, criteria for exposure, potential roles and responsibilities, personal protection and radiation monitoring, procedures for donning protective clothes & monitoring. This section is not a model of clarity and covers material that a medical physicist might be expected to know.
Section 5, which covers activities related to the response, sees the medical physicist implementing the hospital emergency response plan and ensuring that the facility is protected. They will provide briefings on radiological protection and what may occur during the handling of contaminated patients and they will ensure that proper arrangements are followed to minimise the impact on the hospital resulting from the presence of contaminated patients. This section comes with a useful flow chart tracing the possible pathways to treatment for casualties with different combinations of needs, a list of equipment that might be useful and a list of possible actions (including a flow chart showing different actions assigned to different roles in a coordinated manner).
There is also a section labelled the radiological control of areas which is cut from another document and outlines the demarcation of areas for different purposes and the control of people moving through the system to minimise the spread of contamination. Maybe this material should be in the planning section.
Section 6 is entitled early dose magnitude estimation and decontamination. It suggests that accurate dose assessments are unnecessary in the response phase of an emergency; what is needed is a magnitude assessment: is there a problem with either external radiation or contamination that must managed along with the casualty’s clinical needs?
The report discusses how to assess external radiation dose and reviews the gamma ray constant and inverse square law which will probably not be new to many medical physicists. It also mentions a few computer tools such as the Rad Pro Calculator and the Radiation Emergency Medical Management (REMM) dose calculator which are useful to have available.
There are some tables showing how radiation dose can be deduced from observations about which symptoms show and how long after the exposure they show. Versions of these tables should be in the hospital’s emergency data set.
The report suggests that “Internal radiation doses can be extremely complicated to determine” and that “The aim of the assessment of internal contamination is to quantify the incorporation of radioactive material into the body and to estimate the committed effective dose and, where appropriate, the committed equivalent dose to demonstrate compliance with dose limits”. I think that this is appropriate for individual cases of internal contamination following operational mishap but is wrong in the context of responding to a nuclear or radiological emergency. Here the purpose would be to determine what, if any, medical care the casualty might require because of the exposure.
There is a short section on decontamination of casualties. I am sure I have read better.
In the section on the protection of the public (Section 6.2) the report mentions using plume models etc. to estimate deposition levels but gives no clue about how to manage the results. It also talks about determining isodose curves around sealed sources to help the determination of public external exposure.
The collection of excreta for radionuclide analysis is mentioned but no details of the assay methods or reference to dosimetry models used to estimate dose.
After the initial crisis stage there may be a requirement to improve dose estimates. Section 7, which discusses this area has some “key considerations” and some equations but little in the way of practical advice. Maybe following the references quoted may prove more helpful.
In Section 8 it is argued that Medical Physicists should “enhance their communications skills, so that they can contribute to the timely dissemination of relevant information and contribute, all with the response team, in managing individuals and professionals involved in nuclear or radiological emergencies”. You might have thought that these skills, as opposed to speaking to worried members of the public, came with their job.
The psychosocial aspects of nuclear or radiological emergencies gets a sub-section but this does little more than point to further references.
The rest of the section is a very brief overview of communications skills.
Section 9 is a more helpful section on the contents of a “grab and go” bag. This includes dosimeters (EPD and badges), survey instruments, protective equipment, data sheets and forms and miscellaneous tools.
Section 10 gives a very detailed suggested syllabus for training medical physicists and reading lists which are predominantly IAEA publications and would need a fairly large bookshelf to hold and some considerable time to read.
Appendices provide more detailed advice on reception area layout, tags and forms and summary of OILs and reactions to their exceedance.
This is a potentially useful document for hospitals when considering their plans to cope with a nuclear or radiological emergency and considering how to use their radiation specialists. However, it is not only very uneven in the level of detail given but also does not seem to have considered what skills and knowledge the radiation specialist already has and where they might need some training.
It could be better.
[1] See IAEA Human Health Series No. 25, “Roles and Responsibilities, and Education and Training Requirements for Clinically Qualified Medical Physicists”
…if a dozen dead birds are found near a truck accident site?
…if 20 people complain of tingling in the mouth after eating at a fast-food restaurant?
FEMA have some answers. They have published a new 324-page document discussing key planning factors and considerations for response to and recovery from a chemical incident August 2021).
The report shows the potential complexity of responding to a chemical event. Unlike radiological events, chemical events could result in overwhelming numbers of acute casualties, some of which require urgent medical attention with the correct treatments and anti-toxins for the chemical involved – which may not be identified at the start of the event. First responders may be in immediate danger from the contamination themselves, something that is not likely to be true to the same extent for radiological emergencies.
There are broad similarities between the response to a chemical event and to a radiological event (a dangerous substance that can move with air and/or water movements, the need to make decisions with weak information, a complex issue to explain to the public while needing them to urgently take heed of advice, a potentially complex recovery process) but also important differences (rapid onset of medical crisis, wider range of substances to understand).
The FEMA report provides brief details of several chemical accidents, showing the range of events that are included in this class and the complexity of response. It also identifies and discusses the characteristics that are common to chemical accidents which includes the fact that their on-set can be rapid, a quick and effective response is required to save lives, first responders can become exposed, decisions need to be made quickly with a limited understanding of what has occurred, large areas can be affected, communications with the public and between responders is important, medical facilities can be overwhelmed and recovery may take a long time.
It then lists seven Key Planning Factors (KPF), each of which is then given a chapter:
“Prime the Pump” Pre-Event Planning;
Recognize and characterise the Incident;
Communicate with External Partners and the Public;
Control the Spread of Contamination;
Augment Provision of Mass Care and Human Services to Affected Population;
Augment Provision of Health and Medical Services to Affected Population;
Augment Essential Services to Achieve Recovery Outcomes.
It justifies pre-planning with the observation that “A large-scale chemical incident with mass casualties is a realistic threat facing both urban and rural communities nationwide. The risk of misuse or accidents involving toxic industrial chemicals (TIC), which are widely stored in large quantities and are routinely transported by rail, waterway, highway, and pipeline, is substantial”. They also believe that a terror attack using chemicals is credible.
Multiagency planning and preparation are required to face this threat and enable a prompt and effective response. A “whole community” concept of operations is suggested.
The report suggests a systematic approach to planning and preparedness with several discrete steps recommended, each of which is explained in detail with lists of suggested consultees, reference documents, check lists and resource requirements.
It stresses the importance of agreeing how decisions will be made suggesting a process whereby stakeholders agree which decisions will need to be made, the minimum information needed to make them and the potential sources for that information. Decision making processes should be established to select among available options for evacuation, shelter-in-place, decontamination and waste management balancing political/social priorities and public health protection against time and cost constraints, and, therefore, should include discussion of reimbursement/ compensation for resources provided and contingencies if resources are damaged, destroyed, etc.
Another important area for discussion is medical resources. The planning process should establish protocols and procedures for the prioritization of medical resources.
There are a range of ways in which a chemical event can become known – this varies from automatic alarms on chemical plant, reports of smells or gas clouds, reports of unexplained illnesses or collapses of people or animals, active monitoring of public spaces and food. The quicker these signs can be picked up the better. The report discusses possible indicators, what they might mean and how best to use them. By considering what signs might be available and what they might mean in advance the planners increase the likelihood that an event can be detected earlier allowing a better response.
The next step is to characterise the release and its extent with the safety of first responders as a high priority. This requires equipment, training and coordination.
There is a nice discussion about atmospheric dispersion and modelling.
The third KPF refers to communication with external partners and the public. It stresses the importance of communication to enable a coordinated response across multiple agencies, jurisdictions and levels of authority and to inform the public providing key information and advice on self-preservation while countering misinformation and misperceptions.
The section discusses how communications can support a coordinated response, how to inform the public, how to provide time-critical messaging, strategies for effective communications, and best practice (the latter being a useful checklist of 13 elements).
Controlling the spread of contamination (KPF 4) may save lives and will protect the environment. Depending on the nature of the incident, controlling the spread of contamination may involve environmental containment and/or remediation efforts; decontamination of people, goods, or property; and interventions such as evacuations and food recalls. A lot of important decisions may be needed, and considerable expertise and resource bought to bear.
The support of the affected population (Augment provision of mass care and human services to affected population) (KPF-5) provides life-sustaining and human services to disaster- affected populations, including feeding operations, emergency first aid, distribution of emergency items, and family reunification. Additional resources and services may need to be mobilized to support individuals with disabilities, limited mobility, limited English proficiency, children, household pets, and service and assistance animals. Mass evacuations result in a varied group requiring a range of support services.
The basic objective for Emergency Mass Care is to provide for basic survival needs including food, water, emergency supplies, and a safe, sanitary, and secure environment but hopefully it would go beyond that and cater for other needs, reducing the potential for psychological harm.
The report discusses the support that sheltered and evacuated populations might have and the multi-agency strategies that might be considered to prepare to meet these needs, the facilities that may be required to manage evacuations, provide respite, assistance and shelter.
KPF 6 is concerned with augmenting the provision of health and medical services to the affected population. A chemical event could result in a rapid build-up of casualties requiring specialist assistance, including determination of the active agent, the appropriate medical care and the steps required to protect the responders and medical facilities from contamination.
The report discusses medical treatment for chemical casualties which may require that the symptoms presented are treated while the active agent is unknown i.e. provision of oxygen to those exposed to a lung irritant.
The report mentions “CHEMPACKS” which are containers of nerve agent antidotes placed in safe locations around the country (the USA). I do not know if this system is replicated in the UK. The report recognises limitations to this system.
The Tokyo nerve agent attack in March 1995 was serious – 12 people died, 54 were severely injured, and around 980 were mildly to moderately affected. However, most of the 5000-seeking help, many of them with psychogenic symptoms, were understandably worried that they might have been exposed. This demonstrates the value of rapid information dissemination via the media in reassuring the public. It also shows the importance of effective triage at receiving centres in ensuring that medical resources are reserved for those who really have been exposed.
The final KPF is “augment essential services to achieve recovery outcomes”. This section suggests that recovery begins during the planning and response phases. It divides the recovery into three overlapping stages: short term (days), intermediate (weeks – months) and long term (months – years).
Activities and resources needed to attain recovery outcomes will vary depending on the scenario, context, and location of the chemical incident as well as the incident’s impacts on the local infrastructure, economy, and workforce.
The overall objectives of recovery plans and prioritizations are to restore critical services as quickly as possible to limit cascading effects, and to return the affected community to a sense of normality.
After discussing each of the KPFs the report discusses federal preparedness, response and recovery, outlining the four escalating tiers of federal response. These are (1) an on-scene coordinator assessing the situation and watching the response (2) escalation to invoke the National Oil and Hazardous Substances Pollution Contingency Plan (3) a request to the Department of Homeland Security for coordination capabilities and additional federal agency support (4) a Presidential Disaster Declaration under the Stafford Act. These are discussed in turn with examples.
The report provides links to a wide range of additional information and both planning and response tools. Appendices provide a wealth of information including an overview of nine common toxidromes (syndromes caused by exposure to dangerous levels of toxins), a review of US chemical incident policy, legislation and regulation and chemical planning and notification requirements for responsible parties, environmental containment and remediation options, a flow chart showing how medical attention can be targeted and coordinated.
This is a detailed document covering a wide range of material. For a person with responsibility for planning for, or responding to, a chemical incident in the US it is probably a must read. For people with similar responsibilities elsewhere it is a recommended read – read it and compare your level of readiness with that described.
A new IAEA publication has been published (May 2021) (link here) . This has the objective to provide comprehensive, detailed guidance for States, competent authorities and operators to assist them in implementing the recommendations from the IAEA on the Physical Protection of Nuclear Material and Nuclear Facilities. This area is subject to the Convention on the Physical Protection of Nuclear Material (link here). The UK signed on to this, with some reservations as a member of the EU. I cannot establish the current position.
A Physical Protection System (PPS) is an integrated system of detection, delay and response measures. It should comprise people, procedures and equipment to provide defence in depth, with a graded approach, to address the range of threats identified in the applicable threat statement and to protect against both unauthorized removal and sabotage. The PPS comprises interior and exterior intrusion detection sensors, cameras, delay measures, access controls devices and response measures.
The handbook recommends a systematic design and evaluation of the PPS with requirements identification, design, and evaluation phases. These stages are each explained in some detail. This process is fine if you are starting afresh on a new site but, with an old site, you are more likely to be trying to combine systems with a range of ages and technologies into a workable and justifiable system. The principles need to be modified a bit for this circumstance.
The handbook advises on how to deter an attack on a site by making potential adversaries think it an unattractive target because of low probability of success or high risks to themselves.
There are detailed sections on physical protection systems (design, evaluation, testing and technology options) and the management systems required to keep it all operating effectively.
This handbook would be a good read for any security manager and security systems designer.
FEMA have just published on the internet a very interesting paper entitled “Improving Public Messaging for Evacuation and Shelter‐in‐Place Findings and Recommendations for Emergency Managers from Peer-Reviewed Research” (April 2021) (link here). It reports the findings of a comprehensive literature review on the factors that affect the level of compliance with advice on personal protective actions (Shelter in place and Evacuation) in the event of a storm, flood or wild-fire. While these situations are not entirely analogous to radiation emergencies and there may be differences in the behaviour of UK and US populations when faced with an external event, there may be some important messages for UK planners to be gleaned from this work.
The work is related to the Protective Action Decision Model proposed in the literature (see figure) which attempts to identify the cues people may be sensitive to, the level and nature of prior consideration, and the on-the-day perception of the threat, possible responses and how others are responding which may influence decision making.
The key advice to those planning systems to warn and inform the public is to understand the potential impediments to action and take steps to address these barriers in advance, provide consistent advice through multiple trusted channels and to provide frequent updates.
Among many observations, those that seemed most relevant to the UK nuclear industry include:
Individuals find environmental cues such as sights, sounds or smells that indicate an impending threat an aid to decision making. This puts the nuclear industry at a disadvantage because we cannot show pictures of storm clouds, fast flowing rivers about to burst their banks or raging forest fires. On the other hand, we have the dread many people feel about radiation helping to focus minds.
It was noted that, in response to a wildfire, individuals could be categorised into three broad groups:
Wait and see (the largest group);
Stay and defend;
Likely to evacuate.
Seeing neighbours evacuate or other leave was a predictor of increased evacuation across a number of hazard types. This is a well-documented response to an alarm and most people will have observed it where they have been in a building when the fire alarm is tested; many people look to others and copy their behaviour.
Receiving messages from family and friends in addition to the local authority influenced decision making. Many people will seek confirmation of the preferred path of action from their social circles before acting.
Local governments and businesses provide important social cues that can impact on risk perception. Advice to evacuate an area, or even to shelter in place, could be undermined if council employees continued activities such as cutting grass and collecting waste in those areas.
Receiving several consistent warning messages from multiple, credible and trusted sources increases the rates of compliance.
People tend to use social media as a complementary rather than their primary source of information. Social media was also often used to amplify or share information with others.
As mobile phone ownership is now more prevalent than home landlines, public alert and warning calls to landline phone numbers are becoming less effective. The increased reliance on mobile phones may also result in bandwidth congestion during an incident. In the UK where fraction of homes and offices with land lines is falling while the procession of mobile phones is increasing. (See Table A45 in ONS report here which implies that 82% of households have land lines and 90% have mobile phones).
Households with multiple vehicles evacuated in multiple vehicles often with staggered leaving times. This is in the context of an impending storm but is plausible in a radiation accident if only as a mechanism for protecting their vehicles. This would add to traffic congestion.
There is strong agreement across studies and hazards that women are more likely to take appropriate protective action (SIP or evacuate) than men.
Parents with children in the household tended to have more difficulties with making the decision to stay or to leave for hurricanes and flooding. While some of their concerns may be similar to those of other households (e.g., traffic congestion, fuel availability, uncertainty regarding destination, cost), children in the household, especially younger children and larger numbers of children, raised the anxiety level and increased logistical challenges, which caused delays in decision making. Again the dread of nuclear may balance these concerns.
Having a pet, especially where there is a strong attachment to the pet, decreased the likelihood of evacuation. Many studies highlighted concerns about shelters accepting pets, the added cost of evacuating with pets and the logistics of having a pet at a shelter as impediments to evacuation.
Adults who have dementia or other cognitive disabilities and a caregiver(s) who would evacuate with them have evacuation rates that are the same as, or lower than, others. Caregivers were concerned with the potential for those in their care to be exposed to stigma and lack of privacy in a shelter. They were also concerned that unfamiliar settings would exacerbate their symptoms. Family and friends (the social network) tended to play an important role in determining whether to evacuate or not.
Adults with dementia and their caregivers who did go to shelters experienced a range of difficulties, including increased agitation, emotional distress and disorientation. It was challenging for caregivers to provide normal levels of care and comfort in this environment.
Care facilities and their caregivers were challenged in making the decision whether to evacuate or not, given their sense of responsibility to their residents. This research also indicated the importance of care facility residents and their families deciding (and documenting) who would care for them in a disaster (e.g., whether or not they would evacuate to a family’s residence) and then not changing that decision as the threat neared.
Having a household plan increased the likelihood of taking the appropriate Shelter in Place protective action for a tornado. This may be presumed to apply for any threat, underlining the importance of prior information that encourages preparation.
Studies found that individuals grapple with many concerns when deciding to evacuate. According to these studies, the following concerns delayed or negatively influenced the decision:
Traffic congestion and the availability of fuel;
The ability and cost of evacuating with pets;
Costs of evacuation, including travel costs;
Potential issues around the legal status of undocumented immigrants;
Individuals faced with a public shelter as their primary destination had more reluctance to evacuate. Their concerns include crowding with strangers and being located farther away from social networks.
On the basis of the observations a number of recommendations were made:
Use websites and social media platforms and work with local media to provide authoritative, time-stamped, geo-tagged photos and videos of hazards such as rising waters and wildfires. Encourage individuals to share those visuals with friends and family, including via social media. Again, there are differences between these events and radiation emergencies to take into account but there is something to take away from this recommendation.
Warning messages should be clear, consistent and strong but not overly dramatic. Mandatory evacuation orders had more weight than voluntary ones and also carried increased media coverage.
Changing the geographic areas subject to advice can cause confusion and a resulting drop in compliance. This should be minimised where practical.
Messages that clearly described the probable personal impact of the hazard helped individuals realise that they would be personally impacted which motivated protection action.
Visuals such as maps and photos improve message comprehension and support decision making.
Authority figures acting as role models and being seen to comply is helpful.
Tourists who sought information from tourist offices rather than hotel staff were more likely to evacuate (this was in the context of a major storm brewing).
The current event should be compared to those that have posed similar threats. Hopefully nuclear industry will ever have a good back catalogue.
In the preparation stage relationships should be built with television and radio forecasters and other journalists likely to cover the story should it arise.
People should be encouraged to sign up to relevant alert and news feeds, including during the event.
There should be a mechanism in place to follow and monitor the social media of authoritative sources to keep information consistent and address inconsistencies and inaccuracies if they occur. In the UK we also try to coordinate the media lines taken before media releases are issued.
Communications strategies should be tailored to gender differences. For example, given that women are more likely than men to take protective actions, messaging on preparedness should consider the use of outreach channels geared toward women.
Include individuals with disabilities, access and functional needs, and associated advocacy organizations in developing and reviewing community plans for evacuation.
If an evacuation may be called for then consider breaking the news at a time that allows the travel to be completed during daylight hours.
When issuing evacuation orders, explain the risks that led to the decision to evacuate some zones and why other zones are not evacuating.
Provide information about public shelters, including items associated with comfort (e.g., availability of power, air conditioning, rest rooms, and space for families and pets) as well as services for individuals with disabilities and access and functional needs.
The slide library available here is a very good way to assimilate the information given in this report.
The IAEA’s Nuclear Security Series provides international consensus guidance on all aspects of nuclear security to support States as they work to fulfil their responsibility for nuclear security. The IAEA states that “The overall objective of a State’s nuclear security regime is to protect persons, property, society, and the environment from the harmful consequences of a nuclear security event. With the aim of achieving this objective, States should establish, implement, maintain and sustain an effective and appropriate nuclear security regime to prevent, detect and respond to such events. The nuclear security regime covers nuclear material and other radioactive material, whether it is under or out of regulatory control, and associated facilities and associated activities throughout their lifetimes.”
The steps on the way to achieving this include the development of a national detection strategy, the development of detection systems and the processes to monitor and act upon alarms. The response to a genuine event includes notification and confirmation/assessment, location and categorisation, recovery of sources and collection and preservation of evidence. These are explained in detail in IAEA Nuclear Security Series No. 15.
There is an expectation stated in paragraph 6.21 that “The State should carry out exercises under the plan using credible scenarios. Competent authorities should perform exercises and drills at regular intervals, in order to evaluate the effectiveness of the plan. When possible, States should consider participating in regional and international exercises and drills.”IAEA Nuclear Security Series No. 41‑T gives a comprehensive account of how these could be managed.
Exercises can be based on a structured and moderated discussion (a table top exercise) or on activities performed in an operational or field situation to enact a realistic scenario in a manner that simulates, to some extent, the stress and practical constraints of an actual incident (a drill or field training exercise).
The steps taken to plan an exercise include:
Determination of the key activities to be exercised – the scope and objectives of the exercise;
The format and type of exercise, identifying the constraints that these impose;
Agreeing a planning timeline with the key stakeholders;
Developing and approving an exercise scenario;
Identifying the exercise participants and their roles and determining how any gaps where organisations are not playing will be filled;
Developing evaluation criteria.
The report goes through these steps in more detail giving useful advice and warnings as it does. It defines the roles of Exercise Director and exercise planning team; controllers and facilitators, evaluators and players and the support from media spokesperson, observers, safety officer, qualified expert in radiation protection and the rapporteur.
Section 4 of the report discusses: setting up the exercise and preparing for exercise safety; providing exercise briefings; conducting exercise play; and holding debriefing activities and section 5 evaluation.
Appendix 1 gives a useful list of example key activities and actions while Annexes give templates for exercise planning, exercise documentation, assessment and feedback forms and exercise reports as well as an example exercise scenario.
This report is a useful read and contains useful resources for anyone planning such an exercise.
The model of the UK response to a nuclear emergency that results, or may result, in a plume of radioactive material spreading across populated areas of the countryside is to get the local responders, notably the local authority, emergency services and health services, in one place to discuss, decide, coordinate and respond.
Within the model is a unit called the Science and Technical Advise Cell (STAC) with the mission “to ensure timely coordinated scientific and technical advice during the response to an emergency”. We were told that “The STAC should bring together technical experts from those agencies involved in the response and who may provide scientific and technical advice to the Gold Commander. The purpose of the cell would be to ensure that, as far as possible, scientific or technical debate was contained within the cell so that the SCG (and others involved in the response) received the best possible advice based on the available information in a timely, coordinated and understandable way.”
Implicit in this process is the assumption that in any event there is an objective truth and that if scientists chat about it for a while they will determine and understand that truth and be able to explain it to the decision makers who have been too busy on other aspects of the response to explore the science for themselves. The decision makers will be jolly grateful to the STAC and, armed with the scientific consensus, will go on to make the right decisions. They might even say time after time that they are being driven by the science.
In this ideal world, these decisions will be reported to the public and to the media, will be implemented and the crisis will be bought to a close. Also in this ideal world the decisions turn out to be the “right” decisions and the only decisions that could be considered to be “right”, all other options, explored and unexplored, being “wrong”.
One thing we have definitely seen with the coverage of Covid-19 is that the media will not just forward your advice to the public as you might hope. Instead they will turn out an army of interpreters who, fearful that Mrs Miggins and her neighbours will not understand that those in a defined area are being asked to shelter and those outside the area are not, will explain at length what they think “shelter” means and why it has been recommended. They will then find a talking head to explain it again and then another to say that the previous interpretation was wrong and that the public should be being advised to do something else entirely. They will summarise by saying that there is a lack of clarity in what the advice is and who it applies to before cutting to a member of the public who will confirm, in response to a loaded question, that they don’t understand the advice and that they are very worried.
Returning to the decision making, the major issue is that the science does not give all the answers. We may be able to estimate radiation doses to the public, with and without protective actions, but these will be educated guesses rather than accurate. The amount of dose saved (benefit) that makes a protective action (with a cost) worthwhile is debatable and probably different for different people in different situations. The decision to interrupt the lives of people and ask them to stay in their homes knocking back stable iodine tablets is therefore a judgement call not the outcome of a neat equation. This is particularly true when you realise that the estimates of future doses are horribly dependent on assumptions made about what is happening, and what is going to happen, in the bowels of a damaged nuclear facility, what the weather will be when the activity gets out and where the members of the public will be and what they will be doing. Again the media will bring out an army of “experts” to discuss the technology, the science and the decision making process and will argue that the science is debatable, the process flawed and that any of the decisions made are dubious.
Maybe what should happen is that advisors advise and decision makers decide. The spokesperson issuing the advice should state that the decisions have been taken by the Strategic Coordination Group who took into account scientific advice, advice about the incident and how it could develop and the concerns of and for the people affected.
The media should be asked to transmit the advice as given and to resist reheating and reinterpreting it.
That will work.
What are the lessons for the nuclear industry from Covid-19? How do we ensure that our protective action decision making process is robust, transparent, unambiguous and trusted to ensure a high level of public compliance and optimum dose reduction?